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  ABSTRACT:   The paper gives short review of new elements of theories elaborated by present author, illustrated mainly by results of 

calculated examples presented in the previous author's publications. They permit to show unusual possibilities in domain of mechanics and 

strength analyses of structures formed as one separate bar, sometimes of large scale.  The considered straight bars can be designed in many 

different ways. It can be homogenous and prismatic, or have complicated cross-sections - composed of some materials, dislocated in area 

of cross-section in many manners. Step by step are shown: foundation of the theory, some calculated results concerning of geometrical 

characteristics of bar cross-section, influence of bar torsion, determination of internal forces and stresses specially generated by torsion. 

The special attention is turned here on new derivations and examples of instability for such bars under action of combined state of external 

loadings, what lead to determination of ultimate critical curves or surfaces, shown in chapter 6. At last at the end of the paper is given 

information about analyses and shaping of complicated space bar structures, which can be built from many bars with, considered here 

internal structure. The list of references contains only the most important ones selected from 300. For wider lists, see to Refs 12, 21 and 23. 
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1. INTRODUCTION 

As it is announced in above abstract this paper is focused mainly on 

results of some comparative strength analysis of series of straight bars 

with composite and homogenous cross-sections built from steel and 

timber. In the beginning are shown by some drawings: scheme of the bar 

and system of loading, Fig. 1, considered cross-sections, Fig. 2 and then 

calculated internal forces, cores of cross-sections, positions of shearing 

centres (see chapter 3) and its influence on torsion moment and warping 

stresses. These examples and results were discussed in previous author's 

papers, Refs 17 to 21.  

 

 
Fig. 1. Scheme of simply supported bar and internal forces. 

 

Similarly, the way in chapter 6 presents the problem of instability of 

prismatic straight bars with length l=400 cm and with the same cross-

sections shown in the Fig. 2. There, are given new elements of theory 

firstly given in book Ref. 6, next in some LSCE proceedings, Ref.23, 

and lately in papers Refs 24, 25. Essential part of these results is wide 

comparative one example, published in some mentioned above papers, 

of determination strength analysis and next of critical states of 

combined external loadings of three forces: longitudinal P acting with 

certain eccentricity and two bending moments M2 and M3, applied 

along principal axes of main central coordinate system, Fig. 3. 

 
Fig. 2. Considered cross-sections built from steel and timber. Steel is 

shaded densely. Dimensions are given in [cm]. 

 

 
Fig. 3. Scheme of the mono-symmetrical bar loaded by eccentric 

longitudinal force P. 

 

2. APPLIED THEORY 

The wide elements of the theory elaborated by present author generally 

concern of the straight bars and structures composed from such 

elements:  

a) one straight bar or rather simple element of larger structure as subject 

of analyses, Refs 6, 9: 

 - determination of geometrical characteristics of bar cross-section 

(cross-section of a bar rigidities), 

 - determination of displacements, 



 - determination of internal forces in range of statics, dynamics, theory 

of first and second order, stability, 

 - strength analysis - determination of stresses, 

 - interaction of the bar with surrounding media, Refs 6, 

b) one bar as model of bridge or tall building (see Ref. 23 – own works, 

and dissertation of R. Szmit), 

c) complicated large space bar structures Refs 2-4,   

The review of theories, subjects, tasks, numerical examples and 

experimental works were published in wide papers Refs 12, 15, 20, 21, 

24. Number of scientific publications of different type written by the 

present author is exactly 300 (including year 2014 & not counting 

supervised M.Sc. and Ph.D. dissertations and other type papers). 

Relatively wide lists of author's works are given in Refs 12, 21 and 23. 

 

This paper is concentrated on subject, especially intensive investigated 

in last year’s, on strength analyses and instability of the straight bars 

with any type of cross-sections, including composite - built from a few 

different materials, Refs 6, 7, 15-25. There, is applied uniform criterion 

published by author first time in 1997, Refs 8, 13, 16. Especially in Refs 

22 and in present, are done some extensions of theory from book Ref 6.  

 

So, in Ref. 22 are derived formulae for calculation of critical loadings 

for composite bar with mono-symmetrical cross-section under combined 

external loading, longitudinal compressing force and moment bending 

the bar in plane of its symmetry. Now it is repeated derivation for 

compressing longitudinal force and two bending moments applied in 

two principal planes of the cross-section, Fig. 3 and chapter 6.2. 

 

In the past, the examples of instability of the bar under combined 

loading were published with J. Tolksdorf, Ref. 10, 11. 

 

3. GEOMETRICAL CHARACTERISTICS OF BARS CROSS-

SECTIONS 

There, key-matter to any analyses of single bar and even whole large space 

bar structure is definition of so called reduced geometrical characteristics 

for cross-sections, Refs 5, 7, 9, and 17. As the first such characteristics is 

defined reduced area of the bar cross-section: 
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where, is introduced reduced elementary area Ad  (or for thin-walled 

cross-section a thicknesses of the bars walls): 
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So defined reduced area of composite cross-section is an element for 

calculation of next, remaining reduced geometrical characteristics, such as 

e.g. reduced moments of inertia, in it “sectorial moments of inertia” 

necessary for taking into consideration torsion of the bars and general 

effects of instability with bending-torsion character, up to now omitted – 

not possible in other theories and first of all in standards and in 

contemporary designing process. Examples of definitions of reduced 

moments of inertia, in it sectorial, are given below: 

  AdI ji
2

 ,    i, j=2, 3  ^  i≠j,                                                 (2) 

      AdI 3223  ,     AdI
2

ˆ ̂
,   AdI jj  ˆˆ

,     j=2,3. 

Further definitions of the geometrical characteristics following of 

interaction the bar with surrounding media and so called „mass-

characteristics” (Ref. 5) necessary for dynamical analysis, are presented in 

the books Refs 6, 9. 

In this theory are defined “reduced principal axes" of the cross-section, for 

which are equal zero some geometrical characteristics (static moments and 

proper centrifugal moments of inertia – all reduced): 

    0ˆ3ˆ223ˆ22   IIISSS   .                       (3) 

 

3.1. Core of cross-section 

For each cross-section as the first was calculated reduced centre of 

gravity (Fig. 4, axis y), by means of special authors program MBK 

facilitating calculations.  

 

Calculated shapes of cross-sections cores are shown in the Fig. 4. They 

were determined according to following formulae, (Obrębski, Refs 17, 

18 and 24): 
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Fig. 4. Cores determined for considered full composite cross-sections. 

Dimensions are given in [cm]. 

 

3.2. Warping of cross-section 

For the beams with scheme given in the Fig.1 and with cross-sections 

shown in the Fig.2, were applied two kinds of division on closed tubes. 

In the case indicated by letters Xa) were applied only rectangular thin-

walled tubes with thickness of walls 1cm – homogenous or composite 

(at down sector of timber). In the cases Xb) were applied only closed 

homogenous tubes made of steel or timber, what is visible in the Fig. 3 

(Obrębski, Refs 18, 19).  

 

For each such tube were calculated in the beginning warping functions 

with pole in origin of reduced principal coordinates of the cross-section, 

next shearing centre and in last final shapes of warping function for 

each thin-walled tube. So, the cross-section under action of bar loading, 



especially torsion, appears as complicated surface with indifferent 

curves (set of points not moving along the bar). 

 
Fig. 5. Applied division of the cross-sections on tubes of type I to IV, 

see Refs 19 22. Visible axes and position of shearing centres A*. 

 

3.3. Geometrical characteristics associated with warping of cross-

section 

Values of reduced geometrical characteristics for all considered cross-

sections depend on assumed comparative Young’s reduced modulus E  

assumed for whole composite cross-section, and Young's modules for 

materials build into it Refs 6, 9. The results of such calculations for the 

cross-sections shown in the Fig.2 are given in some last works, Refs 17, 

18, 20, and 21. 

Especially important part in mechanical behaviour of the bars play 

warping function )(ˆ s  (calculated for closed tubes) or   )(s (calculated 

for open tubes), see Refs 6, 9. On the ground of this function, are 

determined next “reduced sectorial” geometrical characteristics (see 

Eqns 2): ̂S ,  ̂I , ̂2I , ̂3I . They are very important for calculation of 

critical combined loadings of bars with any type of cross-sections. 

 

3.4. Shearing centre 

As it was shown in the chapter 3.2 and in the Fig. 5, the full cross-

section, even composite as in the Fig.2 (or reinforced concrete), can be 

regarded as set of thin-walled tubes filling it. Such division can be done 

on many ways, but each time it answers to a little other structural 

solution and then behaviour of the whole bar. The cross-sections from 

Fig. 2 were comparatively divided on closed tubes, only, but in two 

manners (see chapter 3.2 and Fig. 5). In effect in each case were 

obtained a little other result. 

 

For beams modelled in this way, were performed comparative strength 

analyses. Calculated positions of shearing centres (A*) are shown in the 

Fig.3 (Obrębski, Ref 18, 19). The calculated these way positions of 

shearing centres for each type of CS are defined by two coordinates: 
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3.5. Geometrical characteristics associated with interaction of bar 

with surrounding media 

In the author's Ref 5 and book Ref 6 was possible analysis of thin-

walled bars having contact with surrounding media: gas (e.g. air), liquid 

(e.g. water) and soil. Derived there formulae and equations are valid for 

full cross-sections if we remember only, that contact with surrounding 

media have only external tubes modelling the bar, Ref. 9. So, such these 

geometrical characteristics depend on shape of cross-section. Examples 

of calculations of such type geometrical characteristics were done in the 

author's books 6, 9, and in the works published with R. Szmit and in his 

Ph.D. dissertation concerning of dynamics of tall buildings (see Refs 12, 

23).  

 

3.6. Geometrical characteristics associated with mass of cross-

section 

For dynamical behaviour of straight bars were derived special set  of 

four differential equations of motion of fourth order, according to theory 

of second order, containing "inertial (mass) geometrical characteristics" 

- other from ordinary e.g. moments of inertia. They contain density of 

materials, see Refs 5, 6. Given their definition are valid for any type 

cross-sections as thin-walled, full and composite - all modelled as sets 

of thin-walled (composite) tubes (or open type) located one into the 

other. Examples of calculation such inertial geometrical characteristics 

are given in the Refs 6, 23 and in mentioned in chapter 3.5 works with 

R.Szmit devoted (oriented) on dynamics of tall buildings. 

 

4. INTERNAL FORCES 

Internal forces associated with torsion, such as bimoment and bending-

torsion moment (Fig.5), were calculated for considered bars shown in 

the Figs 1, 2, 3, according to formulae used in theory of thin-walled 

bars, see Obrębski, Ref 6. Results of calculation are given in the Fig.6. 

There Mw means bending-torsion moment (Mω -see e.g. Refs 5, 6, 9). 

Calculation of these internal forces is up to now not applied for bars 

with full cross-section. It starts to be possible after modelling the bar as 

set of tubes located each into the other. 

 
Fig. 6. Diagrams of internal forces calculated for bar shown in the Fig. 1 

with full composite CSs from the Fig. 2. In all cases are obtained 

strong values of torsion-bending moments (at left) and bimoment (at 

right). On each diagram are shown two curves for two manners of 

CS division, shown in the Fig. 5. 

 

5. STRENGTH ANALYSIS OF STRAIGHT BARS 

Strength analysis for the composite prismatic bars with composite cross-

sections is led in such a way, that: 

- sectorial moments of inertia for whole cross-section is calculated as 

algebraic sum of all thin-walled tubes consisting on bar,  

- bimoment B and bending-torsion moment Mω are determined for whole 

bar, 

- warping (sectorial) function ̂  and sectorial statical moment 
̂

~
S  are 



calculated separately for each thin-walled tube, but with one common 

shearing centre A*, 

- stresses are calculated for all thin-walled tubes. 

 

5.1. Normal stresses 

Normal stresses were calculated according to Eqn. 6. Proper results are 

given in the Figs 7 and 8. 
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Fig. 7. Considered cross-sections. It is visible inclination of indifferent 

axes, when torsion is omitted (last term in Eqn.6). 

 
Fig. 8. Normal stresses calculated by means of Eqn. 6 for particular full 

composite CSs and for each tube. 

 

If we compare especially normal stresses shown in the Figs 7 & 8, there 

are visible evidently high differences concerning as well shape of 

diagrams and values of calculated stresses. The indifferent axis well 

known in traditional strength calculations as straight line (see Fig.7, it is 

inclined differently for each type cross-section), when torsion is taken 

under consideration, appears as curved line! If torsion das not exists, 

(CSs A & C) it stays the straight line… 

 

5.2. Shearing stresses 

Shearing stresses were calculated according to Eqn 7. Proper results are 

given in the Fig 9 (with torsion). 
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5.3. Part of torsion in calculated stresses 

Warping stresses in many tasks obtain significant values, what for two 

examples presented in author's book Ref. 6 and in Figs 10 and 11. 

 
Fig. 9. Shearing stresses calculated for particular full composite CSs and 

for each tube. 
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Fig. 10. Normal stresses in upper row and shearing stresses in lower 

row, calculated for cantilever beam and with channel CSs with 

dimensions 10.5×19 cm. Normal warping stresses have 45% input 

with regard to bending (upper row). Similarly shearing warping 

stresses gives 23% input (lower row). 

 

Simultaneously, it should be compared e.g. normal stresses calculated 

for simply supported beam when omitted torsion, see Fig 7 and when 

effect of torsion is added, see Fig 8. Their differences are radical. 
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Fig. 11. Normal stresses in left column and shearing stresses in right 

column, calculated for simply supported beam and with closed box 

CSs with dimensions 20×10 cm. Normal warping stresses have 6% 

input with regard to bending. Similarly shearing warping stresses 

gives 150% input. 

 

5.3. Comments to strength analyses of composite bars 

Strength analysis of the bars depends on many structural solutions: 

- bar length, its boundary conditions for each of function describing 

independently displacements of bar axis, type of applied cross-

section, position of shearing centre, external bar loading, 

- position of shearing centre and magnitude and shape of cross-section 

core depend not only on shape of cross-section, but also on 

dislocation and strength of applied materials, 

- cross-section of the bar under torsion has very complicated shape of 

stresses and there indifferent "axis" is not straight, but curved line, 

- change of type cross-section generates changes of: 

 bar rigidity including torsion rigidity Ks,  
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 sectorial moment of  inertia  ̂I , 

 shape of its warping function (deplanation - sectorial 

coordinates), 

- thin-walled cross-section assures very well structural behaviour of the 

bar. 

 

6. INSTABILITY OF BARS 

Problem of bars instability is much more complicated, than it is widely 

applied in nowadays engineers practice. It is really multi-parametrical 

task, Refs 8, 13, 24. In last papers present author has investigated 

critical states of combined loadings of bar from Fig. 3 with series of 

mono-symmetrical cross-sections given in the Fig. 2. In effect were 

obtained using so called "uniform criterion" (see chapter 6.1) ultimate 

critical curves, Refs. 22, 24, 25. There, were derived proper formulae for 

calculation of critical compressing forces or/and critical bending 

moment. 

 

Below, is given derivation of set of formulae helpful for calculation of 

this time ultimate critical surfaces for combined external loadings: 

compressing eccentric longitudinal force and two bending moments 

applied along two principal central axes of bar cross-section. Next, are 

shown three examples of such critical surfaces determined for three 

cross-sections: type A, C and Ex 9.2 all showed in the Fig. 2. 

 

6.1. Uniform criterion and instability of bars 

The uniform criterion for determination of critical states of external 

loadings was formulated by Obrębski in 1997 Ref. 8 and next extended 

for further applications Refs 12, 13, 16 Some conference papers were 

published with J. Tolksdorf, too Refs. 10, 11. Certain summary of the 

criterion application and wide list of author’s references is given in the 

papers written by Obrębski Ref 12 and 18 to 24. In the most general 

form the criterion of instability of the structure can be expressed as 

follow: 

Det [K(P,  ω, v, a, M, m, d, t)] =0            ,    (8) 

where particular arguments means: system of forces, frequency of free 

vibrations, loading velocity, acceleration of loading, moving mass, mass 

of structure, dumping effects, time etc. As next can be pointed various 

boundary conditions, internal structure of e.g. bar. The stiffness matrix  

K  in above condition can be obtained in some ways: analytically - as by 

Euler, Vlasov etc., or by means of FEM or FDM, too. 

 

6.2. Applied equations for calculated critical states 

Theoretical solution was started on the ground of four very large 

equations of second and fourth order (see Ref. 6, Eqns (9.26)) taking 

into consideration theory of second-order, external loadings, boundary 

conditions and second order effects. In a little changed form, omitting 

the first equation (influence of longitudinal continuous loadings) and 

dropping some small quantities, similarly as in Ref. 22 some small 

quantities, was obtained much shorter version of considered equations 

(Ref. 22, page 87 Eqns 6): 
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In above equations is used following notation (see Ref 6, pp. 42, 76, 77 

and Ref. 22, page87): 

  E  - Young’s reduced modulus assumed for whole composite  

                   cross-section, 

  A  - reduced area of bar cross-section, 

  2I , 3I  - reduced moments of inertia for transversal cross-section of 

            the bar, with regard relatively to principal its axes  2  and 3 , 

  ̂I  - reduced sectorial moment of inertia of the cross-section, 

  1T , 2M , 3M , B  - internal, cross-sectional forces: longitudinal, 

bending moments with regard to axes  2  and 3 , and bimoment 

– calculated in undeformed configuration of the bar, 

   
p

, 
l - given shearing stresses on right and left longitudinal bar 

edges, 

  N  - longitudinal tensioning force acting on the ends of whole bar (see 

Ref. 3, page 233, Eqn (9.29)), 

  1v , 2v , 3v ,     - displacements of the line formed by of bar cross-

sections main poles (parallel to three bar principal axes  i  and 

rotation with regard to above longitudinal line), 

  ip   - real continuous loading acting in each point of bar walls (its 

middle surface) [N/cm2] parallel to axes of general bar 

coordinates i , 

  A2 , A3   - coordinates of main pole for bar cross-section (in theory 

of first order equivalent to shearing centre). 

Moreover it can be calculated according to Ref. 6: 

   dspq ii     - continuous loading acting on longitudinal unit of the 

bar section [N/cm], 



    dsppm AA )]()([ 3322231     -  continuous torsion 

moment acting on longitudinal unit of the bar section (see Ref 6,  

Eqn (7.1), Fig 7.1, page 143), 
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p ]̂[1    - continuous external bimoment 

(acting on longitudinal unit of the bar section (see Ref. 6,  Eqn 

(3.57a), page 62). 

Besides of above, are defined: 

 torsion rigidity of the bar of cross-section (Ref. 6, Eqn (4.5), page 72 

and Eqn (4.13) page 76): 
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 and other auxiliary magnitudes are defined in following way: 
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If we assume, that longitudinal force is compressing the bar P= -N and 

q
1
=0 (longitudinal uniform loading), three our Eqns 9, can be written as 

below (Ref. 22 & Eqn 13): 
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Moreover, for our task, Eqns 13 can be written much shortly (Ref. 22, 

Eqn 8):  
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IV
    , 

when is introduced notation (Ref 6, Eqns (9.38) & Ref. 22 Eqn 8): 

    
APMd 321    ;     

APMd 232    ;          (15) 

    BMMg  ˆ2332

2 222Pr         .  

Next, we introduce for solution of  Eqns 14 following three functions for 

displacements of bar axis, when   n=1   (first critical force and bar is 

simply supported) filling of boundary conditions: 
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aCaCv n    ,           (16) 

    )sin()sin( 33333 



l

n
aCaCv n     . 

It is easily to proof, that above functions for bar with length l  on its 

ends: for   0  and for  l   are giving zero values when in above 

functions are applied following values of used three coefficients:    

a) for simply supported beam     1ia     and     1)( 2  ii aA   , 

b) for cantilever 5.0ia   and    25.0)( 2  ii aA   there, task is 

solved as for bar with double length - fixed in the middle. 

So, these coefficients  ai  and  Ai  describe bar boundary conditions (see 

Ref. 6, Table 9.2, page 237), and are identical as in widely applied 

generalized Euler’s solutions for simply supported beam. 

Now, we put relations 16 to Eqns 14 with application notation of so 

written two traditional Euler’s critical forces for both above cases a) and 

b), (Eqn (9.42), Ref 6) given here in following way:     
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By analogy additionally is introduced here 
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where   l

n
n


      and      n=1   (first critical force).  

By such notation torsion Wagner’s critical force Eqn 19, has form: 
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After all last operations with introduced notation, finally we come to 

following form of uniform criterion on instability of the bar (see Refs 6, 

Eqn (9.45) and Refs. 8, 9, 10, 22, 24, 25): 
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Now, we extend formulae expressed by Eqns 15 to following shape: 

)( 332332321 PAAPA PMPPMPMd     , 
                (22) 

)( 223223232 APAPA PMPPMPMd     . 

In above both definitions it was additionally taken, that: 

    
PPMM 322    ,  

PPMM 233     . 

It means, that bending moments in cross-section are the sums of given 

moments (with head bars) and part generated by longitudinal eccentric 

(with regard to principal reduced axes P2  and P3 ) compressing 

force P. 

 

Moreover, for bisymmetrical cross-sections relations expressed by Eqns 

12 disappear: 

   0ˆ32       ,         

and then the torsion Wagner’s critical force Eqn 19 has obtain shorter 

form: 
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In this way condition (21) can be written as function of three external 

forces in following manner:         
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or finally for bar compressed by longitudinal force and bended by two 

moments, as it is shown in the Fig. 3, we have: 
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On the other hand Eqn 23 can be expressed in following form: 
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Moreover, denoting:   
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the Eqn 26 can be written in the following form: 

0)()())()((),,( 32ˆ3232  PPLPPKPPPPPPMMPW  ,   (28)
 

 

 By means of condition Eqn 28 are solved all announced tasks. However 

in some calculations were used special cases of the Eqn 25, given 

below. 

 

Case, when both bending moments are given. 

This is general case. After some simple modifications from Eqn 28 we 

obtain: 

0),,( 321

23

32  CPCCPPMMPW          (29) 

here is given new notation: 

 )( ˆ321 PPPC   ,  

 LKPPPPPC  32ˆ322 )(     , 

 )ˆ32323 PPPLPKPC      . 

 

From Eqn 29 by given values of bending moments, we can obtain 

critical value of compressing force P. It is equation of third grade. Its 

solution manually is not convenient and needs application rather 

computer. 

 

Case, when bending moments are absent M2=M3=0. 

In this case from Eqn 24 follow simple condition: 

0)( 1  DPW     ,                 (30) 

or applying Eqn. 25 above condition has the form: 
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Finally from Eqn 30 we obtain condition on value of critical force 
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Above equation is fulfilled by three roots: 

21 PP    ,    
32 PP    ,    ̂3 PP    . 

The smallest of the above roots is the critical force, see Fig. 12. These 

calculations are easy. This way were determined the highest points of 

surfaces of the Figs 13, 19, 31 and for some of presented critical curves 

given in the Figs given below (when they are symmetrical).  

 
Fig. 12. Three roots of Eqn 28. 

 

Case when M2 and force P are given. 

From Eqn 24 is obtained following relation, useful for determination of 

characteristic points of contour lines for vertical sections of ultimate 

critical surfaces: 

  
.

)(

3

2

2

2

3

1
3 kNcm

D

DM

D

D
M 




          (32) 

 

 

Particular case of Eqn 27 when M2 =0 and force P is given 
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Particular case of Eqn 27 when M2 =P=0 are given 
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Case when M3 and force P are given. 

From Eqn 24 is obtained following relation, useful for determination of 

characteristic points of contour lines for vertical sections of ultimate 

critical surfaces: 
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Particular case of Eqn 30 when M3 =0 and force P is given. 
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Particular case of Eqn 30 when M3 =P=0 are given. 
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6.3. Examples of ultimate critical curves and surfaces for combined 

bar loading 

Applying uniform criterion and derived above formulae, were 

determined critical combined loadings for bars with scheme given in the 

Fig. 3 considered with seven cross-sections from the Fig. 2, containing 

two materials: steel and timber. Additionally was calculated example of 

homogenous steel cross-section Ex 9.2, Fig. 2, taken from book written 

by Obrębski (Ref. 6).   

The results of comparative calculations for series of seven bars with the 

same length l=400 cm, were presented partially in papers of Obrębski, 

Refs 22, 24, 25. Now, these information are completed by contour lines 

of ultimate critical surfaces (P=const., M2=const., M3=const.) and 

diagrams of ultimate instability surfaces for combined loadings, given in 

the Figs 13, 19 and 31. Safe zones are below the curves or inside (here 

below) of shown surfaces. Points on the curves or surfaces mean 

instability – critical state. 

 
Fig. 13. Example of ultimate critical surface for combined loadings: P, 

M2 and M3 for cross-section A. Simply supported beam. Force P is 

acting in origin of coordinates. 

By preparation of mentioned and shown below diagrams, were used 

values:  

  P=0, 100, 200, 300 up to 1800 kN;  

  M2=0, ±10000, ±20000, ±40000,  .... , up to ±140000 kNcm,  

  M3=0, ±10000, ±20000, ±40000,  .... , up to ±160000 kNcm, 



 

Fig. 14. Contour lines on ultimate critical surface for given forces P, 

cross-section A, (Fig. 13). Force P is acting in origin of coordinates. 

  

 
Fig. 15. Contour lines on ultimate critical surface for combined loadings 

P and M2 for cross-section A (M3 is given), Fig. 13 [22].  

 
Fig. 16. Contour lines on ultimate critical surface for cross-section A 

when M2 is given, (Fig. 13). Force P is acting in origin of 

coordinates. 

 

 
Fig. 17. Contour lines for cross-section Ba when M3=0. Upper lines for 

simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 18. Contour lines for cross-section Bb when M3=0. Upper lines for 

simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 19. Example of ultimate critical surface for combined loadings: P, 

M2 and M3 for cross-section C. Simply supported beam. Force P is 

acting in origin of coordinates. 

 
Fig. 20. Contour lines on ultimate critical surface for cross-section C 

and given force P, Fig. 13. Force P is acting in origin of coordinates. 

 
Fig. 21. Contour lines on ultimate critical surface for cross-section C 

and given M3, Fig. 13. Force P is acting in origin of coordinates. 



 
Fig. 22. Contour lines on ultimate critical surface for cross-section C for 

combined loadings P and M3 and given M2, Fig. 13 [22]. Force P is 

acting in origin of coordinates. 

 
Fig. 23. Contour lines for cross-section Da and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 24. Contour lines for cross-section Db and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 25. Contour lines for cross-section Ea and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 

6.4. Comments to examples presented in chapter 6.3 

Drawings from Figs 13, 15, 19, 21, 31, and 33 were published in Ref. 

without any formulae with short comment, only. 

 

1. The most important conclusion of this paper is fact, that calculation of 

critical loadings is possible for any type of bars with all kinds of cross-

sections: thin-walled of open or closed type, full and homogenous and 

composite. 

 

 
Fig. 26. Contour lines for cross-section Eb and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 27. Contour lines for cross-section Fa and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 28. Contour lines for cross-section Fb and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 29. Contour lines for cross-section Ga and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

2. It is possible for particular bar calculation state of simple or combined 

critical loadings and even determination of ultimate critical curves or 

surfaces, and safe zones. As external loadings in this paper were used: 



compressing force and bending moments. Moreover, can be solved 

similar tasks for transversal concentrated or continuous loadings acting 

in two principal planes of the bar. 

3. Quoted examples shows, that instability phenomenon is in fact  

multiparametrical. It depends on changes of: 

- bar length, 

- bar cross-section (shape, magnitude, used materials, symmetry, 

bisymmetry), 

- bar boundary conditions, 

- applied external loadings, 

- position of shearing centre and positions of external loadings. 

4. The bar boundary conditions can be described by declaration of three 

coefficients A1, A2, A3 , (Ai= (ai)
2, see Ref. 6, Table 9.2, page 237) 

given independently for each of three displacements functions (see 

Eqns 16). In analysed examples were taken values: 1; 4; 2,0412; 0,25. 

5. Full cross-sections can be modelled as set of tubes located each into 

the other: homogenous or composite or also any combination of such 

prismatic tubes. Each division of bar cross-section on thin-walled 

tubes answer for other bar behaviour. 

6. If we observe, that each of considered cross-sections of the Fig. 2, 

have other values of: 

    a) torsion rigidity Ks, 

    b) sectorial moment of inertia  ̂I , 

    c) position of shearing centre, 

 than on one of the axes we can shown e.g. one of these quantities a) to 

c)  and this way we can obtain next type of ultimate critical curive or  

surface universal for certain family of cross-sections. This problem is 

worthy of separate study. 

3 

 
Fig. 30. Contour lines for cross-section Gb and given M3=0. Upper lines 

for simply supported beam and lower for cantilever. Moreover, 

longitudinal force is acting in geometrical centre (GC) or in origin of 

coordinates (OC). 

 
Fig. 31. Contour lines on ultimate critical surface for cross-section Ex 

9.2. Simply supported beam. Force P is acting in origin of 

coordinates. 

 
Fig. 32. Example of contour lines on ultimate critical surface for 

combined loadings: P, M2 and M3 for cross-section Ex 9.2, 
 Fig. 31. Force P is acting in origin of coordinates. 

 
Fig. 33. Contour lines on ultimate critical surface for combined loadings 
P and M2 for cross-section Ex 9.2, M3=0 [22], Fig. 31. Force P is acting 

in origin of coordinates.  

 
Fig. 34. Contour lines on ultimate critical surface for cross-section Ex 

9.2 and given M2=0, Fig. 31. Force P is acting in origin of 
coordinates. 

7. If we look more carefully on results given in previous papers Refs. 

22, 24, we can see that thin-walled cross-section assure very well 

behaviour of the bar, also with regard to possibility of instability, by 

simultaneously low material consumption. I type cross-section 59 

cm2 while, the cross-section type D has 32/88 cm2 (steel/timber), 

type C – 40/80 cm2 and type - B 60/60 cm2.  If we look especially 

on diagrams in the Figs 35, 36, it is seen that I cross-section is the 

best. 



 Similarly, cross-sections E (84/36 cm2) & F (96/24 cm2) with much 

higher part of steel appears much less profitable. 

 
Fig. 35. Comparison of contour lines of critical surfaces for all 

considered cross-sections for given M3 when force P is applied to 

geometrical centre. Simply supported beam. 

 
Fig. 36. Comparison of contour lines of critical surfaces for all 

considered cross-sections for given M3 when force P is applied to origin 

of coordinates. Simply supported beam. 

 

 
Fig. 37. Comparison of contour lines of critical surfaces for cantilever 

with all considered cross-sections for given M3 when force P is applied 

to geometrical centre. 

 

 
Fig. 38. Comparison of contour lines of critical surfaces for cantilever 

with all considered cross-sections for given M3 when force P is applied 

to origin of coordinates.  

 

6.5. Possible other states of external critical  loadings 

In whole chapter 6 was discussed behaviour of the bars loaded by 

combined loading consisting from three external forces: compressing 

force P and two bending moments M2 and M3. In reality, Force P can 

acting eccentrically (see Eqns 19a) and first of all used equilibrium 

Eqns 9 are derived for the section of the bar with length "dx", only! So 

shown here derived formulae can be used in some other specific tasks, 

what is explained shortly below. 

First example, proved experimentally, concern of determination of 

critical bending moments for steel post with T-section, supporting 

acoustic screens designed for highway around city Wrocław, Poland  

Refs 1, 16. There analysed post have curved shape, and from 

assumption loaded by wind only, acting in plane of symmetry of its 

cross-section. There, maximal bending moment appears at down of 

pillar, in place of its fastening. Therefore, it were applied for solution 

just Eqns 9, with further derivations (see Ref. 16). In result calculated 

this way critical bending moment was proved experimentally in the 

paper Ref. 1, with practically high accuracy. 

Now, we can indicate, that for simply supported bar as in Fig. 1, 

maximal bending moments obtain for continuous transversal  loading q 

and for transversal concentrated lading P maximal values, relatively: 
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Similarly, for cantilever loaded by continuous transversal loading q we 

have in fixed point maximal bending moment  
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So, if we replace in derived above formulae, given in chapter 6.2 

bending moments by shown above Eqns 33 or 34, it will be possible to 

obtain critical states of combined loading by continuous or concentrated 

transversal forces.  

 

7. APPLICATION OF FINITE DIFFERENCES METHOD 

As it is shown e.g. by Obrębski in Refs  9, 12, Finite Differences 

Method is very useful for numerical calculation of many more 

complicated tasks. Solution is obtained in relatively easy manner 

replacing differential equations by identical, but Finite Differences 

Operators. Especially it is useful for determination of: 

- beams deflections and internal forces,  

- critical loadings by more complicated tasks (Obrębski Ref. 13), 

- dynamical behaviour of structures, applying 3D-Time Space 

Method, 

 for of bridge girders under moving loadings, 

 for tall buildings, etc.   

Applying FDM, any task, which has theoretical solution in the form of 

differential equations, can be transformed to Finite Differences 

Operators (FDO), ever in the polynomial shape: 
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where, the symbols A and C mean proper coefficients, e.g. Refs 12, 23. In 

result we come to solution of Eqn  

     Kx=Q     ,                                           (36) 

for determination of unknown displacements  x of whole structure. 

There, unknown displacements  x  are determined, by given set of nodal 

forces Q   and   K – stiffness matrix of whole structure, composed by 

means of Eqn 35.  

 
Fig. 39. Three independent schemes for displacements of single bar on 

some approaches, LSCE 2001, 2003 (see e.g. Ref. 23). 



Equation 36 is simply set of algebraic linear equations. Composition of 

Eqn 36 and solution can be performed by small author’s program MRS 

(17.5 kB). As it is explained in the Fig. 39, for one bar can be used a set 

of e.g. three equations (FDO), each with other boundary conditions. 

 

7.1. Finite Differences Method in static tasks 

One of the simplest examples is shown in the Figs 40 & 41, where 

straight bar has variable rigidity generated by different number of 

applied steel reinforcements (Fig. 40) located on bar length, as it explain 

Fig.41 with cross-sections γ-γ,  δ - δ,  -. 

 
Fig. 40. Examples of reinforced cross-sections. 

 
Fig. 41: Examples of reinforced bars with variable rigidity on its length. 

 

7.2. Finite Differences in dynamics – 3D Time Space Method 

Shortly the approach is named 3D-Time Space Method (or 3D-TSM). 

There, is introduced time as the fourth dimension. It is assumed, that 

motion equations of whole space structure are combined with Finite 

Differences Method. The method was discussed in some papers, Ref. 

12, 21, 23. 

 
Fig. 42. Idea of the dynamical stiffness matrix, Ref. 23.  

 
Fig. 43. Scheme of the dynamical stiffness matrix from Fig 42, applied 

in computer program. 

It were solved some examples of application the method. Here are 

presented the simplest. First concern of the mass moving with velocity v 

along freely supported beam, Fig.44. The bar was divided on 10 

sections. In the Fig.45 are shown deflected axes of the beam for all 11 

considered time moments (series). Diagrams are produced by MS Excel. 

 

Fig. 44. Concentrated force moving along simply supported beam, with 

velocity v, Ref.23. 

 
Fig. 45. Deflections of the beam from Fig 44, given in cm. Mass 100t is 

moving with velocity 36 km/h. 

 
Fig. 46. Concentrated force is moving along the concrete band. 

The next example shown in the Fig. 46 concern of the big aircraft 

moving along concrete airport landing band, located on soil. In the 

example, for possibly simple presentation of results, were applied not 

numerous division as well in 3D space as in time axis, too. 

The FDM was applied for dynamical behaviour of tall buildings, too (R. 

Szmit, see Ref. 23), Figs 47-50. 

 
Fig. 48. Examples of cross-section and manner of modelling of the tall 

building as cantilever. 



 
Fig. 47. Cross-section and schemes of a tall building modelled as thin-

walled cantilever with two closed rectangular tubes. 

 

 

Fig. 49. Deflections of the analyzed model of the building calculated for 

two principal planes of the cross-section. 

 
Fig. 50. Calculated oscillations of the building deflections for three its 

levels 

 

8. APPLICATION OF FINITE ELEMENT METHOD  

There, were elaborated two own algorithms for space bar structures by 

Finite Element Method application 

- small program MES (name in Polish) for didactic purposes in 

University of Warmia and Mazury in Olsztyn, 

- large program system for technical optimization of mainly space 

bar domes for (written and tested with A.H. Fahema) named as 

SPES (SPace structurES). 

Program system SPES consists of some programs for: 

 - printing scheme of structure, 

 - analysis of structure, 

 - analysis of calculated results (searching minimal or maximal values 

of displacements, internal forces, stresses, geometry of structure, 

volume of built in material, weight of structure, comparisons of 

some declared tasks (up to 20) etc. 

 

9. APPLICATION OF FINITE DIFFERENCES CALCULUS 

The first author’s more important solutions concern determination of 

internal forces in range of statics for plane regular hexagonal grids. 

There, was used calculus of finite differences and obtained solutions 

were in form of closed formulae. In this way were obtained results for: 

straight bars loaded in regular way; for hexagonal plane grid, which was 

simply supported on circular external edges, Fig. 51-54 and for infinite 

strips - hexagonal grid with some kinds of boundary conditions, Refs 2, 

3 and Figs 55-57. In each of above solutions firstly were determined 

deflections of nodes, and next bending moments and shearing forces 

Refs 2, 3. All solutions are in the form of closed formulae. 

Some possible shapes of closed edges for supports of hexagonal regular 

grids are shown in the Fig. 58.  

 

Fig. 51. Calculated hexagonal plane grid loaded in all nodes by forces P, 

Refs. 2, 3. 

 

Fig. 52. Diagram of calculated deflections. Shown deflections should be 

multiplied by (Pl3)/ (72EI), Refs 2, 3. 

 
Fig. 53. Diagram of calculated bending moments, Refs 2, 3. 

 

Fig. 54. Diagram of calculated shearing forces Refs 2, 3.  

 

Fig. 55. Band of hexagonal plane grid and four variants of analyzed 
transversal loadings, Refs 2, 3. 



 

Fig. 56. Diagram of calculated deflections. Shown deflections should be 
multiplied by (Pl3)/ (12EI) [66] 

 

Fig. 57. Diagram of calculated bending moments. Shown values should 
be multiplied by Pl/2, Refs 2, 3. 

a)                      b)                         c)                      d) 

    

e)                     f)               g) 

     
Fig. 58. The hexagonal grids b-g possible for analytical solutions 

 

10. HYBRID METHODS OF ANALYSIS 

It is important, that applying equations derived for Finite Differences 

Equation Method (Refs 2, 3) to the computer (hybrid method), we 

obtain simply set of linear algebraic equation (46). In this case structure 

can be much complicated and have any boundary conditions and to be 

loaded in each node by other force (see Ref. 23). By such approach 

family of structures shown in the Figs 51-58 can be much wider, not 

limited by necessity to fulfil in analytical way of structure boundary 

conditions. 

  

11. PART OF EXPERIMENTS IN STRUCTURES ANALYSIS 

The first significant experimental tests were performed on series thin-

walled cantilevers under combined loading - bended eccentrically. 

Schemes of the experiments are shown in the Figs 59-61. 

The experiments were done by the author himself and in cooperation 

with S. Wichniewicz, Z. Urbaniak, P. Flont, The experiments were 

performed mainly in years 1988-1992 and elaborated partially a little 

latter, Ref. 23. There, were compared similar thin-walled brazen 

cantilevers with open or closed CSs, with thicknesses of walls δ =0.5; 

1.5 and 2.5mm.  

Moreover, were applied two different boundary conditions. Cantilevers 

at left, were fully fastened and at right were at all free end or plenary 

constrained by rigid still cork, Figs 77 and 78. 

 

 
Fig. 59. Scheme of the experiment 

   

Fig. 60. Loading system for thin-walled bars (Fig.59) 

 
Fig. 61. Scheme of stand used by author for experiments with cantilever 

thin-walled bars (Fig. 59). 

 

 

 

Fig. 62. At left different distances from fastened end of hinges (breaking 

point in lower part – dependently on boundary conditions) for thin-

walled cantilevers (Fig. 59) and at right views from both sides.  

 

 

Fig. 63. Capacity Pn of the cantilevers dependently on type of CSs, 

applied boundary conditions and on thickness of bar walls. 



As consequence of above schemes were obtained measured results of 

similar bars load capacity given in Table 1.  

Table 1. Measured critical loadings (load carrying capacity) for 

cantilevers with walls thickness 0.5mm, with open or closed cross-

sections, with free- or plenary constrained right end. 

Scheme 

of the cantilever 

Pn load capacity [kN] 

(hanging mass [kg]) 

by given bar cross-section δ=0.5 mm 

  

 

302.858 

(30.883) 

430.345 

(43.883) 

 
442.702 

(45.143) 

488.793 

(49.843) 

There, bar with open CS has obtain load capacity Pn=45.143kg, (with 

boundary condition at free bar end  0' ) higher than bar wit closed 

CS Pn=43.883kg (with boundary condition at free bar end 0''  ). It is 

result of better boundary conditions of the first bar. Simultaneously, in 

the Fig. 63, are given comparative curves showing character of 

dependences of bar load on capacity on thickness  δ  of its walls. It is 

strongly nonlinear. We can draw conclusion, that by thicker bar walls, 

influence of local instability is much smaller. Some more interesting 

results are shown in the Figs 82-86. 

 
Fig. 64. Calculated normal stresses: longitudinal and circuital; in two 

different (open type) CSs α-α and b-b in distance from fastening 
relatively 2 cm and 55 cm, Figs 59, 60; thickness of bar walls δ =0.5 

mm and δ =1.5mm. The right end of cantilever at all free. 

 
Fig. 65. Calculated normal stresses: longitudinal and circuital; in two 

different (open type) CSs α-α and b-b in distance from fastening 
relatively 2 cm and 55 cm, Figs 59, 60; thickness of bar walls δ =0.5 
mm and δ =1.5mm. The right end of cantilever plenary constrained 

by rigid steel cork (see Fig. 60). 

 

Fig. 66. Calculated normal stresses: longitudinal and circuital; in two 
different (closed type) CSs α-α and b-b in distance from fastening 

relatively 2 cm and 55 cm, Figs 59, 60; thickness of bar walls δ =0.5 
mm and δ =1.5mm. The right end of cantilever at all free. 

 

Fig. 67. Calculated normal stresses: longitudinal and circuital; in two 
different (closed type) CSs α-α and b-b in distance from fastening 

relatively 2 cm and 55 cm, Figs 59,60; thickness of bar walls δ =0.5 mm 
and δ =1.5mm. The right end of cantilever plenary constrained by rigid 

steel cork (see Fig. 60). 
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Fig. 68. Diagrams of measured strains for model No 11with walls 

thickness app. δ =1.5 mm by hanging mass 100 kg in CSs α-α (2 cm 
from fastening)and b-b (55cm from fastening) , Fig. 59. Black lines – 
shape of CS, redlines – longitudinal strains, yellow lines – circuital 

strains, green lines – inclined (45o) strains. 

It is worthy to explain, that after electro-resistance measurements of 

strains (cantilevers from Fig. 59), were calculated normal    and   

shearing stresses, which applied in Eqns (26) permits to determinate of 

measured bimoments B and bending-torsion moments, given in Table 2 

(J.B. Obrębski, Ref. 23). The bimoment and bending-torsion moment 

have among the others, two following definitions: 

    dsAdB 


1
 ,      dsnM 

   ,               (26) 

expressed by: stream of normal stresses   or shearing stresses  and 

its arm  n. 



It should be added, that shearing and normal stresses occurring in Eqns 

(26) can be experimentally measured, or calculated by any method, e.g. 

by FEM. This idea was used in Ph.D. dissertation of  N. Jankowska, 

Ref. 23. Such calculations are much better for open type CSs, where 

investigated forces are much higher. 

Table 2. Internal forces - bimoments and bending-torsion moments 
calculated analytically accordingly to Eqns 26 (method proposed by 

J.B.Obrębski using measured experimentally   and  , Fig.77). 

Internal 

Force 

Model 21  

with open cross-section 

Model 22  

with closed cross-section 

analytical measured analytical Measured 

B [kNcm2] 831.82 848.475 -4.826 9.65 

Mω [kNcm] -10.1908 -2.175 2.189 3.35 

11.1. Experimental estimation of critical bimoment 

Together with M.E. El Awadi from Egypt (1992, see Ref. 23), were 

executed relatively simple experiments for confirmation of possibility to 

appear of critical bimoment - instability effects by loading bar by pure 

bimoment – derived theoretically Ref. 9.  

     

Fig. 87. Scheme of loading applied to model and its photo. 

Scheme of experiment is shown in the Fig. 87. As critical bimoment 
calculated as effect of force P, was noted moment of appearance of 
waves on longitudinal edges of the slit, Fig. 88. The diagrams in the Fig. 
89 shows comparisons of measured experimentally and calculated 
theoretically, critical bimoments. For thin walls of model both results 
are almost identical. 

      
Fig. 88. Three different models loaded by pure bimoment (see Fig. 87) 

with visible waves on free longitudinal slits. 

 

Fig. 89. Observed and theoretically calculated [86] critical bimoment 

measured with M.E.El Awadi (Egypt) dependently on thickness of bar 

walls and applied bar cross-section 

Similarly, the special attention was there focused on some visible 

bimoment influence on instability for mentioned above thin-walled 

cantilevers.  Shown photographs and drawings (e.g. Figs 78, 80-85) 

presents observed effects. In the light of these experiments, the 

bimoment is evidently the real internal force, very dangerous for 

structures, which should be seriously considered by designing of objects 

composed from thin-walled bars. 

11.2. Experimental investigation of thin-walled nodes under torsion 

Author has turned attention also on transmission of torsion forces 

(bimoment and bending-torsion moment) through plane nodes connecting 

2 or 3 thin-walled bars, Figs 90-92. These experiments were performed by 

N.Jankowska as Ph.D. work (see Ref. 23) proposed and supervised by 

author. 

 
Fig. 90. View on whole model of Y2 type (node walls is 2 times thicker 

than bars. 

 
Fig. 91. Electro-resistance measuring equipments for model with node 

type Y2. 

 
Fig. 92. Electro-resistance measuring equipments for model with node 

type L. Visible scanners, loading system, and location of sensors 
(rosettes). 

Table 3. Measured bimoments (N. Jankowska see Ref 23) 

i – number of  

sheets in  

central node 

Frame type Li Frame type Ti Frame Yi 

1 2 3 1 2 3 1 2 

L1 L2 L3 T1 T2 T3 Y1 Y2 

C –active CS -1364 -1355 -1259 -1495 -1390 -1339 -1413 -1333 

B-passive CS -455   -285 -261 -241 -322 -285 

E-passive CS    287 244 222 259 223 

In the Table 3 are given condensed results of investigations by 

N.Jankowska  transmission of torsion forces (bimoment) from active (C) 



to passive (B, E) cross-sections through plane nodes connecting 2 or 3 

thin-walled bars. 

11.3. Experiments for presentation during lectures 

The last series of simple author’s experiments were planned for didactic 

purposes, to be presented for students during lectures on slides. It permits 

to show, that calculated phenomena can be simply observed… 

 

Fig. 93. The photo of warping on torsioned much box – identical as 
calculated analytically by theory, Refs 6, 9. 

Such presentations during lecture, as shown in the Figs 93-97 (LSCE 

2009) makes theory much easy for understanding, its necessity, existing 

warping as effect of torsion and at last, appearing warping stresses. 

In many cases for proving certain, real behaviour of structure is enough 

very simple, not expensive, but well thought out strategy of performed 

experiment. 

 
Fig. 94. Torsioned cartoon model with lipped channel cross-section. 

 

Fig. 95. Closing up for torsioned cartoon model with lipped channel 
cross-section. 

 

Fig. 96. Torsioned cartoon model with I cross-section, see Fig. 97. 

There, are demonstrated during lectures many other simple experiments 

showing deflections of bars under loading, instability phenomena, 

influence of boundary conditions etc. These experiments are 

demonstrated on objects universally used every day by peoples. 

 

Fig. 97. Torsioned cartoon model with I cross-section; closing up.  

11.4. Lessons drown from experiments quoted in literature 

Moreover, the author turns attention on experiments which can be found 

in literature (for details and literature see Refs 12, 21). So, in some 

papers and during lectures, they are quoted and compared with theory. 

Such  results of investigations were presented in classical book of W.Z. 

Własow, next by A.I. Strielbitska and G.I. Jewsiejenko, and the others 

including done much later by A.Glinicka where were compared her 

experiments with FEM calculations. As extremely important, the author 

regard test of steel pillar instability, ordered by W. Bober, done 

theoretically by J.B. Obrębski and compared with experiment performed in 

Wrocław, (see Refs 1, 16). There, in both cases were obtained 7% of 

difference results. 

Presentation of such comparisons during lectures and on scientific 

conferences permit to evaluate correctness of calculation many tasks by 

widely applied theories and numerical programs based e.g. on Finite 

Element Method (B.S. Smith, and R.P. Pruki with P.M. Lopez Cape 

Town 2001, A. Glinicka  and J.B. Obrębski). There, FEM results seems 

to be very approximate – rough with errors often up to 300% and even 

700% (noted by W. Szczepiński). 

11.5. Full scale experiment for instability of cantilever 

Next, very important  analytical test was done (sent at February 10, 

2010)  on official order of (now) prof. W.Bober (27.11.2009), to 

calculate critical loading of steel pilar supporting acoustic screen for 

highway around Wrocław, Poland (Polish patent: by W.Bober, 

P.Ogielski, R.Tarczewski, K.Janczura) Ref. 1, 16. Project was managed 

by R.Tarczewski After theoretical calculations, by J.B.Obrębski, was 

determined critical bending moment. After some weeks, prof. W.Bober 

has sent information, that very close result was obtained experimentally. 

So, theory of bar instability under transversal loading generated by 

wind, giving critical bending moment, was excellently verified. 

  

12. ACCURACY OF CALCULATIONS  

The first wider worldwide information on menace of thin-walled 

structures by defects was given by author in Singapore, (see Ref. 21). 

But after publication of Lopez & Pruki on SEMC conference in Cape 

Town (2001) the author has focus his attention on many aspects of 

structure modelling. So, it was discussed e.g. in some author’s papers 

(see Refs. 12, 21, 23). There, attention is turned on many matters 

having influence on exactness of obtained results: 

-  applied theory, 

-  applied computer method of calculation, 

-  structural solutions of particular bars, 

-  scheme of structure including structure of nodes and applied 

supporting system, 

-  exactness of Finite Element Method compared with  

experimental results, 

-  efficiency of some covering systems applied for roof structures. 

 

13. SPACE BAR STRUCTURES - THEORY AND PROGRAMS 

The first author’s field of scientific activity was analysis of complicated 

space bar structures. Small part of beginning these investigations is 



presented in the Refs 2-4. More advanced elements of elaborated theory, 

examples and particular references are given in reviewing papers Refs 

12, 20, 21, 23. For introducing here some more interesting author’s 

results, below are shown some computer drawings without any further 

comments. 

 
Fig. 98. Definition of net of points, used for structures from Figs 99-

102, Ref. 3. 

 

 
Fig. 99. Structure spread on toroidal net of points, Obrębski Bulletin of 

IASS v.36, 1995, n. 2 August. 

 

Fig. 100. Two next double-layer structures spread on toroidal net of 

points, Obrębski Bulletin of IASS v.36, 1995, n. 2 August. 

 
Fig. 101. Elliptical structure, program elaborated for Ph.D. dissertation 

of A.H. Fahema (Libya). 

 

 
Fig. 102. Structure wavy vertically and horizontally, program elaborated 

for Ph.D. dissertation of A.H. Fahema (Libya). 

For analysis of all above structures were elaborated proper programs 

based on theory initially formulated in Ref. 3. 

 
Fig. 103. Project of church with visible UNIDOM type skylight and four 

masonry ribbed domes – original author’s structures, Ref. 23. 

 

14. CONCLUSIONS  

During more than twenty last years, on the ground of unconventional 

theory elaborated by present author, step by step were solved different 

tasks and examples, non typical for traditional strength of materials and for 

structural mechanics, too. On basis of these results it was possible to 

formulate in previous authors works many important observations and 

conclusions. Below are quoted some more interesting and especially new. 

1. For bars with full and even composite cross-sections, are possible 

strength and mechanical analyses, identical as for thin-walled bars, 

in full range of theory for thin-walled bars (Obrębski, Refs 17-25). 

2. Shown in chapter 6 application of uniform criterion to instability 

problems, even by combined loadings can be much more 

complicated, exact and very efficient than up to now (Obrębski Refs 

16, 21-25 & with Tolksdorf Refs 10, 11). 

3. All above calculations shows, that instability of the bar is much more 

complicated as it is in the (5). It depends on: the length of the bar, its 

boundary conditions, shape of cross-section, disposition and 

properties of materials forming cross-section (in effects position of 

reduced centre of gravity and shearing centre), rigidity of the bar on 

its length, applied external combined loadings: concentrated, 

continuous, eccentric, moments, longitudinal, transversal in two 

principal planed etc. At last it can be determined critical value of 

velocity and acceleration of loading or concentrated masses moving 

along certain bridge girder (Obrębski & with Szmit, see Refs 12, 13, 

15, 16, 20-25). 

4. Presented here theory elaborated by Obrębski Ref. 6, 16 was 

efficiently proved experimentally by Bober & Tarczewski, Ref. 1. 

5. Modelling of the bars with full cross-section including even composite 

by means of set thin-walled bars – closed tubes or of open type, located 

one into the other, permit on easy way to calculate some auxiliary 

quantities important for strength analyses known up to now in theory of 

thin-walled bars: sectorial coordinates (warping function), shearing 

centre, torsion rigidity (with good accuracy!), internal forces – 

bimoment and bending-torsion moment and cross-section core etc. 

6. Modelling of bars with full cross-sections, as set of thin-walled bars 

located one into the other, can be done on many manners. So, shown in 

the paper modelling as set of closed tubes, can be extended on the thin-

walled bars with open cross-sections. Each choice answers of other 

structural solution and mechanical behaviour of the bar. 

7. The most time-consuming stage of calculations for composite bars is 

determination of geometrical characteristics of their cross-section 



associated with bar torsion. Just its knowledge permit on many new 

analyzes applied up to the moment for thin-walled bars, only. 

8. All calculations in range of strength for discussed bars shown in some 

previous papers, Refs 13-25 and in this work, nowadays, after first 

elaboration of proper sheets of Excel, are easy for duplicate and 

modification. In result, e.g. in present work was possible to show 

results for 104 examples. 

9. New, proposed analyses of bars with full cross-sections, including 

composite ones, gives radically new qualities of results in range of its 

strength.  

10. Given examples show influence of change of sign for bending 

moments on stresses and critical loadings. Up to now it was not 

investigated this problem for longitudinal force P, what means critical 

tension for the bar, as it was shown by Własow, Mutermilch and in 

Refs 6, 9. It is at all real. 

11. Knowledge of ultimate critical curves and surfaces for combined 

loadings, much significantly facilitate decisions by designing of 

structures. 

12. Presented now results confirm conclusions from last authors papers, 

that process of analyses of structures having composite elements should 

be much advanced than it is proposed in contemporary: classical 

strength of materials and structural mechanics, academic lecture notes 

and first of all in standards. It concern not only determination of 

geometrical characteristics, internal forces and sectorial stresses 

generated by torsion, but states of combined critical loadings, too. The 

last problem appears as very complicated, multi-parametrical and 

sensitive on many structural details, what in general is not understood.  

13. Here, the author can add own observations and not only, that 

modelling discussed here bars by means of FEM also gives not exact 

solutions, often very far from experimental results.  

14. Summarizing, it should be suggested, that proposed here methods of 

strength analyses, led by aid of computer, should be introduced to 

normal designing practice. 
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